Similarity Search

CSE545 - Spring 2022 Stony Brook University

H. Andrew Schwartz

 $A \cap B$

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Frameworks

Algorithms and Analyses

Hadoop File System S Streaming Spark

MapReduc

Tensorflow

Similarity Search Hypothesis Testing Link Analysis Recommendation Systems

Deep Learning

Finding Similar Items

(http://blog.soton.ac.uk/hive/2012/05/10/r ecommendation-system-of-hive/)

(http://www.datacommunitydc.org/blog/20 13/08/entity-resolution-for-big-data)

Finding Similar Items: Topics

- Shingling
- Minhashing
- Locality-sensitive hashing
- Distance Metrics

Challenge: How to represent the document in a way that can be efficiently encoded and compared?

Goal: Convert documents to sets

Goal: Convert documents to sets

k-shingles (aka "character n-grams")- sequence of k characters

E.g. *k*=2 doc="abcdabd" singles(doc, 2) = {ab, bc, cd, da, bd}

Goal: Convert documents to sets

k-shingles (aka "character n-grams")- sequence of k characters

- E.g. *k*=2 doc="abcdabd" singles(doc, 2) = {ab, bc, cd, da, bd}
- Similar documents have many common shingles
- Changing words or order has minimal effect.
- In practice use 5 < k < 10

Goal: Convert documents to sets

Large enough that any given shingle appearing a document is highly unlikely (e.g. < .1% chance)

Can hash large shingles to smaller (e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

acters

a, bd}

- Similar documents have many common shingles
 Changing will fis or order has minimal effect.
- In practice use 5 < k < 10</p>

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Goal: Convert sets to shorter ids, signatures

Goal: Convert sets to shorter ids, "signatures"

			or criminy,	111	
Element	S_1	S_2	S_3	S_4	•
a	1	0	0	1	
Ь	0	0	1	0	
c	0	1	0	1	
d	1	0	1	1	
e	0	0	1	0	

Characteristic Matrix X

(Leskovec at al., 2014; http://www.mmds.org/)

often very sparse! (lots of zeros)

Jaccard Similarity:

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

Jaccard Similarity: $sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
са	0	1	*

Jaccard Similarity: $sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	
ab	1	1	* *
bc	0	1	*
de	1	0	*
ah	1	1	**
ha	0	0	
ed	1	1	**
са	0	1	*

Jaccard Similarity: $sim(S_1, S_2) = \frac{S_1 \cap S_2}{S_1 \cup S_2}$

 $sim(S_1, S_2) = 3 / 6$ # both have / # at least one has Problem: Even if hashing shingle contents, sets of shingles are large
e.g. 4 byte integer per shingle: assume all unique shingles,
=> 4x the size of the document
(since there are as many shingles as characters and 1byte per char).

Characteristic Matrix: X

	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄	
ab	1	0	1	0	
bc	1	0	0	1	
de	0	1	0	1	
ah	0	1	0	1	
ha	0	1	0	1	
ed	1	0	1	0	
са	1	0	1	0	

Characteristic Matrix: X

	S	S	S	S
	-1	2	- 3	-4
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

2) Shuffle and repeat to get a "signature" for each set.

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

2) Shuffle and repeat to get a "signature" for each set.

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

2) Shuffle and repeat to get a "signature".

	2	1	2	1
	S ₁	S ₂	S ₃	S ₄
ah	0	1	0	1
са	1	0	1	0
ed	1	0	1	0
de	0	1	0	1
ab	1	0	1	0
bc	1	0	0	1

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

2) Shuffle and repeat to get a "signature".

	2	1	2	1
	S ₁	S ₂	S ₃	S ₄
ah	0	1	0	1
са	1	0	1	0
ed	1	0	1	0
de	0	1	0	1
ab	1	0	1	0
bc	1	0	0	1

signatures

Characteristic Matrix: X

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

2) Shuffle and repeat to get a "signature" for each set.

Idea: We don't need to actually shuffle. We can just permute row ids.

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: h

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

Minhash function: *h*

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed #permuted row 2$ $h(S_2) = ha #permuted row 1$ $h(S_3) =$

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed #permuted row 2$ $h(S_2) = ha #permuted row 1$ $h(S_3) = ed #permuted row 2$ $h(S_4) =$

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

permuted order 1 ha 2 ed 3 ab 4 bc 5 ca 6 ah 7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

 Based on permutation of rows in the characteristic matrix, *h* maps sets to first row where set appears.

> $h(S_1) = ed$ #permuted row 2 $h(S_2) = ha$ #permuted row 1 $h(S_3) = ed$ #permuted row 2 $h(S_4) = ha$ #permuted row 1

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

Minhash function: h

 Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

• Record first row where each set had a 1 in the given permutation

$$\begin{array}{|c|c|c|c|c|c|c|}\hline & S_1 & S_2 & S_2 & S_3 & S_4 \\ \hline & h_1 & 2 & 1 & 2 & 1 \\ \hline \end{array}$$

 $h_1(S_1) = ed$ #permuted row 2 $h_1(S_2) = ha$ #permuted row 1 $h_1(S_3) = ed$ #permuted row 2 $h_1(S_4) = ha$ #permuted row 1

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

2

1

 Record first row where each set had a 1 in the given permutation

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & S_1 & S_2 & S_2 & S_3 & S_4 \\ \hline & h_1 & 2 & 1 & 2 & 1 \\ \hline \end{array}$$

 $h_1(S_1) = ed #permuted row$

 $h_1(S_2) = ha \# permuted row$

h(S) = ed #permuted row

Characteristic Matrix:

		<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
3	ab	1	0	1	0
4	bc	1	1 0		1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

• Record first row where each set had a 1 in the given permutation

2

1

 $h_1(S_1) = ed #permuted row$

 $h_1(S_2) = ha \# permuted row$

h(S) = ed #permuted row

Characteristic Matrix:

			<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂				

Characteristic Matrix:

			<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
4	3	ab	1	0	1	0
2	4	bc	1	0	0	1
1	7	de	0	1	0	1
3	6	ah	0	1	0	1
6	1	ha	0	1	0	1
7	2	ed	1	0	1	0
5	5	са	1	0	1	0

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1

Characteristic Matrix:

							_
				<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃				

Characteristic Matrix:

					_			
				<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄	
1	4	3	ab	1	0	1	0	
3	2	4	bc	1	0	0	1	
7	1	7	de	0	1	0	1	
6	3	6	ah	0	1	0	1	
2	6	1	ha	0	1	0	1	
5	7	2	ed	1	0	1	0	
4	5	5	са	1	0	1	0	

Minhash function: h

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Minhash function: *h*

• Based on permutation of rows in the characteristic matrix, *h* maps sets to rows.

Signature matrix: M

 Record first row where each set had a 1 in the given permutation

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃	1	2	1	2
Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Characteristic Matrix:

				S_1	S_2	S ₃	S_4
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃	1	2	1	2

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Characteristic Matrix:

 S_2

0

 S_1

1

0

1

1

ab

an

ha

ed

са

3

6

1

2

5

1 4

3

6 3

2 6

5 7

4 5

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of permutations (i.e. ~100)

0

1

1

 S_4

0

1

0

0

h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

 S_2

 S_{3}

 S_4

 S_1

(Leskovec at al., 2014; http://www.mmds.org/)

1

0

0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Characteristic Matrix:

 S_{2}

0

 S_1

1

0

1

1

ab

an

ha

ed

са

3

6

1

2

5

1 4

3

6 3

2 6

4 5

5 7

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

Estimate with a random sample of permutations (i.e. ~100)

0

1

1

 S_4

0

1

0

0

h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

 S_2

 S_1

S3

 S_4

Estimated Sim(S_1, S_3) = agree / all = 2/3

(Leskovec at al., 2014; http://www.mmds.org/)

1

0

0

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

Property of signature matrix: The probability for any h_i (i.e. any row), that $h_i(S_1) = h_i(S_2)$ is the same as $Sim(S_1, S_2)$

Thus, similarity of signatures S_1 , S_2 is the fraction of minhash functions (i.e. rows) in which they agree.

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S_1 , S_3) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	са	1	0	1	0

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
h ₂	2	1	4	1
h ₃	1	2	1	2

Error Bound?

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

Characteristic Matrix:

				<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	
1	4	3	ab	1	0	1	0	
3	2	4	bc	1	0	0	1	
7	1	7	de	0	1	0	1	
6	3	6	ah	0	1	0	1	
2	6	1	ha	0	1	0	1	
5	7	2	ed	1	0	1	0	
4	5	5	са	1	0	1	0	

Error Bound?

Expect error: O(1/√k) (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2).

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h_1	2	1	2	1
h_2	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

Characteristic Matrix:

Error Bound?

Expect error: **O(1**/√*k*) (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2). N = k observations

Standard deviation(*std*)? < 1 (worst case is 0.5)

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

Characteristic Matrix:

Error Bound?

Expect error: **O(1**/√*k*) (k hashes)

Why? Each row is a random observation of 1 or 0 (match or not) with P(match=1) = Sim(S1, S2). N = k observations

Standard deviation(*std*)? < 1 (worst case is 0.5) Standard Error of Mean = *std*/ \sqrt{N}

	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
h ₁	2	1	2	1
<i>h</i> ₂	2	1	4	1
h ₃	1	2	1	2

Estimated Sim(S₁, S₃) = agree / all = 2/3

Real Sim(S₁, S₃) = Type a / (a + b + c) = 3/4

Try Sim(S $_2$, S $_4$) and Sim(S $_1$, S $_2$)

In Practice

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

In Practice

Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Solution: Use "random" hash functions.

• Setup:

• Pick ~100 hash functions, hashes

Store M[i][s] = a potential minimum h_i(r)
 #initialized to infinity (num hashs x num sets)

Solution: Use "random" hash functions.

Setup:

hashes = [getHfunc(i) for i in rand(1, num=100)]

#100 hash functions, seeded random

for i in hashes: for s in sets:

Sig[i][s] = np.inf #represents a potential minimum *h_i(r) ; initially infinity*

Solution: Use "random" hash functions.

Setup:

hashes = [getHfunc(i) for i in rand(1, num=100)]

#100 hash functions, seeded random

for i in hashes: for s in sets:

Sig[i][s] = np.inf #represents a potential minimum $h_i(r)$; initially infinity Algorithm ("efficient minhashing"):

for r in rows of cm: #cm is characteristic matrix compute $h_i(r)$ for all i in hashes #precompute 100 values for each set s in sets: #columns of cm

if cm[r][s] == 1:

for i in hashes: #check which hash produces smallest value
 if h_i(r) < Sig[i][s]: Sig[i][s] = h_i(r)

Solution: Use "random" hash functions.

Setup:

```
hashes = [getHfunc(i) for i in rand(1, num=100)]
```

#100 hash functions, seeded random

for i in hashes: for s in sets:

Sig[i][s] = np.inf #represents a potential minimum h_i(r); initially infinity
Algorithm ("efficient minhashing") without charact matrix:
for feat in shins: #shins is all unique shingles
compute h_i(feat) for all i in hashes #precompute 100 values
for each set s in sets: #sets is list of shingle sets
if feat in s:
 for i in hashes: #check which hash produces smallest value
 if h_i(feat) < Sig[i][s_{id}]: Sig[i][s_{id}] = h_i(feat)

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs!

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => 4x the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.

E.g. 1m documents; 1,000,000 choose 2 = 500,000,000,000 pairs!

(1m documents isn't even "big data")

Document Similarity

Duplicate web pages (useful for ranking

Plagiarism

Cluster News Articles

Anything similar to documents: movie/music/art tastes, product characteristics

COVID-19 Report matching

Goal: find pairs of minhashes *likely* to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Goal: find pairs of minhashes *likely* to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

If we wanted the similarity for all pairs of documents, could anything be done?

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix

→ Candidate pairs end up in the same bucket.

Step 1: Divide signature matrix into *b* bands

Locality-Sensitive Hashing Step 1: Divide into b bands

Step 1: Divide into *b* bands Step 2: Hash columns within bands (one hash per band)

(Leskovec at al., 2014; http://www.mmds.org/)

Step 1: Divide into *b* bands Step 2: Hash columns within bands (one hash per band)

Step 1: Divide into *b* bands Step 2: Hash columns within bands (one hash per band)

Step 1: Divide into *b* bands Step 2: Hash columns within bands (one hash per band)

Columns 2 and 6

Step 1: Divide into *b* bands Step 2: Hash columns within bands (one hash per band)

Columns 2 and 6

Document-Similarity Pipeline

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 = S_2 | b^{(5)})$: probability S1 and S2 agree within a given band

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 = S_2 | b^{(5)})$: probability S1 and S2 agree within a given band = $0.8^5 = .328$

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 = S_2 | b^{(5)})$: probability S1 and S2 agree within a given band = $0.8^5 = .328 = P(S_1! = S_2 | b) = 1 - .328 = .672$
Probability of Agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 = S_2 | b^{(5)})$: probability S1 and S2 agree within a given band = $0.8^5 = .328 = P(S_1! = S_2 | b) = 1 - .328 = .672$ $P(S_1! = S_2)$: probability S1 and S2 do not agree in any band

Probability of Agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 == S_2 | b^{(5)}): \text{ probability S1 and S2 agree within a given band}$ = 0.8⁵ = .328 => $P(S_1 != S_2 | b) = 1 - .328 = .672$ $P(S_1 != S_2): \text{ probability S1 and S2 do not agree in any band}$ = .672²⁰ = .00035

(Leskovec at al., 2014; http://www.mmds.org/)

Probability of Agreement

- 100,000 documents
- 100 random permutations/hash functions/rows
 => if 4byte integers then 40Mb to hold signature matrix
 => still 100k choose 2 is a lot (~5billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p(S_1 == S_2) = .8$

 $P(S_1 == S_2 | b): \text{ probability S1 and S2 agree within a given band}$ = 0.8⁵ = .328 => $P(S_1 != S_2 | b) = 1..328 = .672$ $P(S_1 != S_2): \text{ probability S1 and S2 do not agree in any band}$ = .672²⁰ = .00035

What if wanting 40% Jaccard Similarity?

Similarity Search

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

(http://rosalind.info/glossary/euclidean-distance/)

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

(http://rosalind.info/glossary/euclidean-distance/)

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

Typical properties of a distance metric, *d*:

d(a, a) = 0d(a, b) = d(b, a)

 $d(a, b) \le d(a,c) + d(c,b)$

(http://rosalind.info/glossary/euclidean-distance/)

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance

• • •

- Edit Distance
- Hamming Distance

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g.

• Euclidean Distance

$$distance(X,Y) = \sqrt{\sum_{i}^{n} (x_i - y_i)^2} \quad (\text{``L2 Norm''})$$

n

Cosine Distance

. . .

- Edit Distance
- Hamming Distance

Pipeline gives us a way to find *near-neighbors* in *high-dimensional space* based on Jaccard Distance (1 - Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance

• Edit Distance

. . .

Hamming Distance

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

- E.g. for euclidean distance:
- Choose random lines (analogous to hash functions in minhashing)
- Project the two points onto each line; match if two points within an interval